The Influence of Pressure on the Phase Transition Temperature

Fig. 3. Pressure dependence of the transition temperature T_{c} for a KH₂AsO₄ crystal (10³ at = 0.981 kbar)

pressure the phase transition is shifted to lower temperatures with no essential change in the shape of the $\epsilon(T)$ anomaly. The maximum values of the dielectric constant increase somewhat under pressure influence. Fig. 3 and 4 show the transition temperatures as functions of pressure. Within the measured pressure range a linear dependence was found. In the case of two KH₂AsO₄ crystals $(T_c = 96.2 \text{ }^{\circ}\text{K} \text{ and } 95.6 \text{ }^{\circ}\text{K}, \text{respectively})$ the shifts of T_c with pressure, $dT_c/dp = (-3.4 \pm 0.2) \text{ deg/kbar}$ and $(-3.2 \pm 0.2) \text{ deg/kbar}$, were observed. In the case of the RbH₂PO₄ crystal $(T_c = 146 \text{ }^{\circ}\text{K})$ we obtained $dT_c/dp = (-8.2 \pm \pm 0.3) \text{ deg/kbar}$. These shifts and that for KH₂PO₄ [3] are listed in Table 1, and plotted in Fig. 5 against the transition temperature at atmospheric pressure. The measured points lie almost in a straight line. This may be accidental, and it should be tested experimentally with the other isomorphous ferroelectric substances, e.g. RbH₂AsO₄ ($T_c = 110 \text{ }^{\circ}\text{K}$).

71	1	1	· · · · ·	т
- 1	° Q.	n	0	
	. Ol	N .		

Experimental data of KH ₂ AsO ₄ , KH ₂ PO ₄ , and RbH ₂ PO ₄ and derived	1
data about the tunneling energy Ω and the interaction parameter J	r
(cf. the text). Data of the deuterated crystals are designated by the	3
index D	

	$\rm KH_2AsO_4$	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	$\mathrm{RbH}_{2}\mathrm{PO}_{4}$
$T_{c}(^{\circ}\mathrm{K})$	96	122	146
$T_{\rm c, D}$ (°K)	162	213	218
$-\frac{\mathrm{d}T_{\mathrm{c}}}{\mathrm{d}p}\left(\frac{\mathrm{deg}}{\mathrm{kbar}}\right)$	3.3	5.7 [3]	8.2
$S_1(T_c)$ (10 ⁻³ kbar ⁻¹)	1.16*)	1.13*)	1.21*)
Ω/kT_c	0.45	0.65	0.77
Ω (cm ⁻¹)	30	55	78
$4 \ \Omega/J$	0.42	0.57	0.65
J_{D}/J	1.57	1.53	1.26

*) Calculated by linear extrapolation to the transition temperature from experimental data of Haussühl [16].

19 physica (a) 2/2

275

C. FRENZEL, B. PIETRASS, and E. HEGENBARTH

4. Discussion

In the theoretical explanation of the pressure dependence of $T_{\rm c}$ our approach is similar to those of Novaković [6] and Blinc and Žekš [7], but our derivation is based on Kobayashi's dynamic theory [9, 10] which at present seems to be the most satisfactory theory for $\rm KH_2PO_4$ -type ferroelectrics. In this theory the total Hamiltonian is of the form $H = H_{\rm P} + H_{\rm L} + H_{\rm PL}$, $H_{\rm P}$ describing the proton tunneling motion in the double minimum potentials along the O-H…O bonds, $H_{\rm L}$ the lattice vibrations, and $H_{\rm PL}$ the coupling between tunneling motion and lattice vibrations. The tunneling term is generally expressed as [5]

$$H_{\mathbf{p}} = -2 \, \mathcal{Q} \, \sum_{l} X_{l} - \frac{1}{2} \, \sum_{ll'} J_{ll'} \, Z_{l} \, Z_{l'} \,, \qquad (1)$$

 X_i and Z_i being components of the pseudo-spin, Ω the tunneling energy, and $J_{ll'}$ the parameters of the proton-proton coupling which favours the formation of the ferroelectric state.

The transition temperature T_c is defined as the temperature at which the frequency of the ferroelectric mode, which is a coupled proton tunneling and optical lattice vibration mode, tends to zero. T_c is determined by the equation [9, 10]

$$4 \ \Omega - J \tanh \frac{\Omega}{kT_c} = 0 , \qquad (2)$$

where $J = \Sigma_{l'} J_{lr} + J_{\rm L}$ and k is Boltzmann's constant. The part $J_{\rm L}$ which results from the proton-lattice coupling has been explicitly given by Kobayashi [9] and Cochran [10]. For $J_{\rm L} = 0$ equation (2) reduces to the equation for $T_{\rm c}$ in the molecular-field approximation of the tunneling model [12]. This approximation has been used by Novaković [6] for his investigation assuming J to be pressure-independent.

In the case of pressure application, the distance 2ζ between the two equilibrium sites in the double minimum potential is reduced, the values Ω and J are varying, resulting in a variation of $T_{\rm c}$. Hence we have

$$\frac{\mathrm{d}T_{\mathrm{c}}}{\mathrm{d}p} = \left(\frac{\partial T_{\mathrm{c}}}{\partial J}\frac{\partial J}{\partial \zeta} + \frac{\partial T_{\mathrm{c}}}{\partial \Omega}\frac{\partial \Omega}{\partial \zeta}\right)\frac{\partial \zeta}{\partial p}.$$
(3)

From equation (2) we derive

$$\frac{\partial T_{\rm c}}{\partial J} = \frac{k}{4} \left(\frac{T_{\rm c}}{\Omega} \sinh \frac{\Omega}{kT_{\rm c}} \right)^2 \tag{4}$$

and

$$\frac{\partial T_{\rm c}}{\partial \Omega} = -\frac{T_{\rm c}}{\Omega} \left(\frac{kT_{\rm c}}{2 \Omega} \sinh \frac{2 \Omega}{kT_{\rm c}} - 1 \right) \leq 0.$$
(5)

The dependence of J on ζ is known from the papers of Blinc et al. [7, 8] and Kobayashi [9]: $J \sim \zeta^2$, thus $dJ/d\zeta = 2 J/\zeta$. For the simple double minimum potential composed of the potentials of two harmonic oscillators (mass m,